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Complex Systems Science aims to understand concepts like complexity, self-organization,
emergence and adaptation, among others. The inherent fuzziness in complex systems
definitions is complicated by the unclear relation among these central processes: does
self-organisation emerge or does it set the preconditions for emergence? Does complexity
arise by adaptation or is complexity necessary for adaptation to arise? The inevitable
consequence of the current impasse is miscommunication among scientists within and
across disciplines. We propose a set of concepts, together with their information-theoretic
interpretations, which can be used as a dictionary of Complex Systems Science discourse.
Our hope is that the suggested unifying information-theoretic framework may facilitate
consistent communications among practitioners, and provide new insights into the field.
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1. Introduction

Complex Systems Science studies general phenomena of systems comprised of many
simple elements interacting in a non-trivial fashion. Currently, fuzzy quantifiers like
‘many’ and ‘non-trivial’ are inevitable. ‘Many’ implies a number large enough so
that no individual component/feature predominates the dynamics of the system,
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but not so large that features are completely irrelevant. Interactions need to be
‘non-trivial’ so that the degrees of freedom are suitably reduced, but not constrain-
ing to the point that the arising structure possesses no further degree of freedom.
Crudely put, systems with a huge number of components interacting trivially are
explained by statistical mechanics, and systems with precisely defined and con-
strained interactions are the concern of fields like chemistry and engineering. In so
far as the domain of Complex Systems Science overlaps these fields, it contributes
insights when the classical assumptions are violated.

It is unsurprising that a similar vagueness afflicts the discipline itself, which no-
tably lacks a common formal framework for analysis. There are a number of reasons
for this. Because Complex Systems Science is broader than physics, biology, sociol-
ogy, ecology, or economics, its foundations cannot be reduced to a single discipline.
Furthermore, systems which lie in the gap between the ‘very large’ and the ‘fairly
small’ cannot be easily modelled with traditional mathematical techniques.

Initially setting aside the requirement for formal definitions, we can summarise
our general understating of complex systems dynamics as follows:

(1) complex systems are ‘open’, and receive a regular supply of energy, information,
and/or matter from the environment;

(2) a large, but not too large, ensemble of individual components interact in a
non-trivial fashion;

(3) the non-trivial interactions result in internal constraints, leading to symmetry
breaking in the behaviour of the individual components, from which coordinated
global behaviour arises;

(4) the system is now more organised than it was before; since no central director
nor any explicit instruction template was followed, we say that the system has
‘self-organised’ ;

(5) this coordination can express itself as patterns detectable by an external ob-
server or as structures that convey new properties to the systems itself. New
behaviours ‘emerge’ from the system;

(6) coordination and emergent properties may arise from specific response to envi-
ronmental pressure, in which case we can say the system displays adaptation;

(7) when adaptation occurs across generations at a population level we say that
the system evolved ;

(8) coordinated emergent properties give rise to larger scale effects. These inter-
dependent sets of components with emergent properties can be observed as
coherent entities at lower resolution than is needed to observe the components.
The system can be identified as a novel unit of its own and can interact with
other systems/processes expressing themselves at the same scale. This becomes
a building block for new iterations and the cycle can repeat from 1. above, now
at a larger scale.

The process outlined above is not too contentious, but does not address ‘how’
and ‘why’ each step occurs. Consequently, we can observe the process but we can not
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understand it, modify it or engineer for it. This also prevents us from understanding
what complexity is and how it should be monitored and measured; this equally
applies to self-organisation, emergence, evolution and adaptation.

Even worse than the fuzziness and absence of deep understanding already de-
scribed, is when the above terms are used interchangeably in the literature. The
danger of not making clear distinctions in Complex Systems Science is incoherence.
To have any hope of coherent communication, it is necessary to unravel the knot of
assumptions and circular definitions that are often left unexamined.

Here we suggest a set of working definitions for the above concepts, essentially
a dictionary for Complex Systems Science discourse. Our purpose is not to be
prescriptive, but to propose a baseline for shared agreement, to facilitate commu-
nication between scientists and practitioners in the field. We would like to prevent
the situation in which a scientist talks of emergence and this is understood as self-
organisation.

For this purpose we chose an information-theoretic framework. There are a num-
ber of reasons for this choice:

• a considerable body of work in Complex Systems Science has been cast into
Information Theory, as pioneered by the Santa Fe Institute, and we borrow
heavily from this tradition;

• it provides a well developed theoretical bases for our discussion;
• it provides definitions which can be formulated mathematically;
• it provides computational tools readily available; a number of measures can be

actually computed, albeit in a limited number of cases.

Nevertheless, we believe that the concepts should also be accessible to disciplines
which often operate beyond the application of such a strong mathematical and
computational framework, like biology, sociology and ecology. Consequently, for
each concept we provide a ‘plain English’ interpretation, which hopefully will enable
communication across fields.

2. An information-theoretical approach

Information Theory was originally developed by Shannon [65] for reliable trans-
mission of information from a source X to a receiver Y over noisy communication
channels, and includes fundamental concepts of source coding and channel coding.

Source coding quantifies the average number of bits needed to represent the
result of an uncertain event – intuitively, it measures one’s freedom of choice in se-
lecting a message which captures information in the source X faithfully, i.e. without
information loss. This quantity is known as (information) entropy. In the simplest
cases, the amount of information can be measured by the logarithm (base 2) of
the number of available choices. The entropy is a precise measure of the amount
of freedom of choice (or the degree of randomness) contained in the process – a
process with many possible states has high entropy. Formally, given a probability
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distribution P over a (discrete) random variable X, the entropy is defined by

H(X) = −
∑

X

p(x) log p(x) , (1)

and is the only measure satisfying three required properties:

• changing the value of one of the probabilities by a small amount changes the
entropy by a small amount;

• if all the choices are equally likely, then entropy is maximal;
• entropy is independent of how the process is divided into parts.

The joint entropy of two (discrete) random variables X and Y is defined as the
entropy of the joint distribution of X and Y :

H(X, Y ) = −
∑

X,Y

p(x, y) log p(x, y) , (2)

Mutual information I(X; Y ) is defined as the amount of information (in bits) that
the received signal Y contains about the transmitted signal X, on average:

I(X;Y ) = H(X) + H(Y )−H(X, Y ) = H(Y )−H(Y |X) , (3)

where H(Y |X) is the conditional entropy of Y given X, also called the equivocation
of Y about X. If X and Y are independent, the joint entropy is simply the sum of
their individual entropies, and the mutual information is zero. Informally, we can
state that

mutual information = receiver’s diversity − equivocation of receiver about source(4)

Equivocation of Y about X may also be interpreted as non-assortativeness between
Y and X: the degree of having no reciprocity in either a positive or negative way.
This interpretation is particularly useful in dealing with assortative, disassortative,
and non-assortative networks.

Channel coding establishes that reliable communication is possible over noisy
channels if the rate of communication is below a certain threshold called the channel
capacity. Channel capacity is defined as the maximum mutual information for the
channel over all possible distributions of the transmitted signal X.

In the remainder of this work, we intend to point out how different concepts
in Complex Systems Science can be interpreted via simple information-theoretic
relationships. In particular, when suitable information channels are identified, the
rest is often a matter of computation – the computation of “diversity” and “equiv-
ocation”. The choice of channels is typically a task for modelers, while in biological
systems the “embodied” channels are shaped by interactions with the environment.

There are other mathematical approaches, such as non-linear time series analy-
sis, Chaos Theory, etc., that also provide insights to the concepts used by Complex
Systems Science. We note that these approaches are outside the scope of this pa-
per, as our intention is to provide a candidate unifying framework rather than a
competing methodology. It is possible that Information Theory has not been widely
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used in applied studies of complex systems because of the lack of clarity. We are
proposing here to clarify the applicability and exemplify how different information
channels can be identified and used.

3. Complexity

It is an intuitive notion that certain processes and systems are harder to describe
than others. Complexity tries to capture this difficulty in terms of the amount of
information needed for the description, the time it takes to carry out the descrip-
tion, the size of the system, the number of components in the system, the number
of conflicting constraints, the number of dimensions needed to embed the system
dynamics and related ideas. A large number of definitions have been proposed in the
literature and since a review is beyond the scope of this work we refer the interested
reader to http://bruce.edmonds.name/.

Here we propose to adopt as definition of complexity the amount of information
needed to describe a process, a system or an object. This definition is computable
(at least in one of its forms), is observer-independent (once resolution is defined),
it applies to both data and models [12] and provides a framework within which
self-organisation and emergence can also be consistently defined.

3.1. Concept

Algorithmic Complexity The original formulation can be traced back to
Solomonoff, Kolmogorov and Chaitin, who developed independently what is to-
day known as Kolmogorov-Chaitin or algorithmic complexity [16]. Given an entity
(this could be a data set or an image, but the idea can be extended to material
objects and also to life forms) the algorithmic complexity is defined as the length (in
bits of information) of the shortest program (computer model) which can describe
the entity. According to this definition a simple periodic object (a sine function for
example) is not complex, since we can store a sample of the period and write a
program which repeatedly outputs it, thereby reconstructing the original data set
with a very small program. At the opposite end of the spectrum, an object with no
internal structure cannot be described in any meaningful way but by storing every
feature, since we cannot rely on any shared structure for a shorter description. It
follows that a random object has maximum complexity, since the shortest program
able to reconstruct it needs to store the object itselfa.

A nice property of this definition is that it does not depend on what language
we use to write the programb.

Statistical Complexity A clear disadvantage of the algorithmic complexity is
that it can not be computed exactly but only approximated from abovec. A criti-

aThis follows from the most widely used definition of randomness, as structure which can not be
compressed in any meaningful way.
bIt can be shown that descriptions using different languages differ by constants.
cSee the Chaitin theorem [15].
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cism often made to this definition is that there are problems for which associating
randomness to maximum complexity seems counter-intuitive. Imagine you throw
a cup of rice to the floor and you want to describe the spatial distribution of the
grains. In most cases you do not need to concern with storing the position of each
individual grain; the realisation that the distribution is structure-less and that pre-
dicting the exact position of a specific grain is impossible is probably all you need to
know. And this piece of information is very simple (and short) to store. There are
applications for which our intuition suggests that both strictly periodic and totally
random sequences should share low complexity.

One definition which addresses this concern is the statistical complexity [26],
which attempts to measure the size of the minimum program able to reproduce
the statistically significant features of the entity under analysis. In the rice pattern
mentioned above, there is no statistical difference in the probability of finding a
grain at different positions and the resulting statistical complexity is zero. Along
with our previous non mathematical analogy we could say that for many purposes
the actions of a mentally disabled patient, taking apparently random actions at any
time can be described very briefly by just noticing the lack of apparent intentionality
or purpose in the patient’s behaviour.

Apart from implementation details, the conceptual difference between algorith-
mic and statistical complexity lies in how randomness is treated. Essentially, the
algorithmic complexity implies a deterministic description of an object (it defines
the information content of an individual sequence), while the statistical complexity
implies a statistical description (it refers to an ensemble of sequences generated
by a certain source) [37, 11]. As suggested by Boffetta et al. [11], which of these
approaches is more suitable is problem-specific. In the previous analogy, the details
of the behaviour of a mentally-disabled patient maybe of crucial importance to a
psychiatrist, who may thus prefer an algorithmic approach, but less relevant to a
more superficial observer, for whom a statistical description would suffice.

Excess entropy and predictive information As pointed out by Bialek et
al. [8], our intuitive notion of complexity corresponds to statements about the un-
derlying process, and not directly to Kolmogorov complexity. A dynamic process
with an unpredictable and random output (large algorithmic complexity) may be as
trivial as the dynamics producing predictable constant outputs (small algorithmic
complexity) – while “really complex processes lie somewhere in between”. Interest-
ingly, however, the two extreme cases share one feature: the entropy of the output
strings “either is a fixed constant or grows exactly linearly with the length of the
strings”, and corrections to the asymptotic behaviour do not grow with the size
of the data set. Grassberger [37] identified the slow approach of the entropy to its
extensive limit as a sign of complexity. Thus, subextensive components – which
grow with time less rapidly than a linear function – are of special interest. Bialek
et al. [8] observe that the subextensive components of entropy identified by Grass-
berger determine precisely the information available for making predictions – e.g.
the complexity in a time series can be related to the components which are “useful”



September 1, 2006 10:29 WSPC/INSTRUCTION FILE ITprimer-ws-acs

An Information-theoretic Primer 7

or “meaningful” for prediction. We shall refer to this as predictive information. Re-
visiting the two extreme cases, they note that “it only takes a fixed number of bits
to code either a call to a random number generator or to a constant function” – in
other words, a model description relevant to prediction is compact in both cases.

The predictive information is also referred to as excess entropy [25, 23], stored
information [66], effective measure complexity [37, 51, 33], complexity [50, 2], and
has a number of interpretations.

3.2. Information-theoretic interpretation

3.2.1. Predictive information

In order to estimate the relevance to prediction, two distributions over a stream of
data x are considered: a prior probability distribution for the futures, P(xfuture),
and a more tightly concentrated distribution of futures conditional on the past data,
P(xfuture|xpast), and define their average ratio

Ipred(T, T ′) =
〈

log2
P(xfuture|xpast)

P(xfuture)

〉
, (5)

where 〈· · ·〉 denotes an average over the joint distribution of the past and the future,
P(xfuture|xpast), T is the length of the observed data stream in the past, and T ′

is the length of the data stream that will be observed in the future. This average
predictive information captures the reduction of entropy (in Shannon’s sense) by
quantifying the information that the past provides about the future:

Ipred(T, T ′) = H(T ′)−H(T ′|T ) or informally,

predictive information = total uncertainty about the future−
uncertainty about the future, given the past (6)

The predictive information is always positive and grows with time less rapidly
than a linear function, being subextensive. It provides a universal answer to the
question of how much is there to learn about the underlying pattern in a data
stream: Ipred(T, T ′) may either stay finite, or grow infinitely with time. If it stays
finite, this means that no matter how long we observe we gain only a finite amount
of information about the future: e.g. it is possible to completely predict dynamics
of periodic regular processes after their period is identified. For some irregular pro-
cesses the best predictions may depend only on the immediate past (e.g. a Markov
process, or in general, a system far away from phase transitions and/or symmetry
breaking) – and in these cases Ipred(T, T ′) is also small and is bound by the loga-
rithm of the number of accessible states: the systems with more states and longer
memories have larger values of predictive information [8]. If Ipred(T, T ′) diverges
and optimal predictions are influenced by events in the arbitrarily distant past,
then the rate of growth may be slow (logarithmic) or fast (sublinear power). If the
data allows us to learn a model with a finite number of parameters or a set of un-
derlying rules describable by a finite number of parameters, then Ipred(T, T ′) grows
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logarithmically with a coefficient that counts the dimensionality of the model space
(i.e. the number of parameters). Sublinear power-law growth may be associated
with infinite parameter (or nonparametric) models such as continuous functions
with some regularization (e.g. smoothness constraints) [9].

3.2.2. Statistical complexity

The statistical complexity is calculated by reconstructing a minimal model, which
contains the collection of all situations which share a similar specific probabilistic
future – the causal states – and measuring the entropy of the probability distribution
of the states. The description of an algorithm which achieves such reconstruction
and calculates the statistical complexity for 1D time series can be found in [63] and
for 2D time series in [62].

In general, the predictive information is related to the statistical complexity
Ipred(T, T ′) ≤ Cµ, which is the minimum average amount of memory needed to
statistically reproduce the configuration ensemble to which the sequence belongs
[70] – both predictive information and statistical complexity are measured in bits.

3.2.3. Excess entropy

Excess entropy is defined as a measure of the total apparent memory or structure
in a source [24]:

E =
∞∑

L=1

(hµ(L)− hµ), (7)

where hµ(L) = H(L)−H(L−1), L ≥ 1, for the entropy H(L) of length-L sequences
or blocks, and hµ = limh→∞

H(L)
L is the source entropy rate – also known as per-

symbol entropy, the thermodynamic entropy density, Kolmogorov-Sinai entropy,
metric entropy, etc. The length-L entropy rate hµ(L) is the average uncertainty
about the Lth symbol, provided the (L− 1) previous ones are given [11]. As noted
by Crutchfield and Feldman [24], the length-L approximation hµ(L) typically over-
estimates the entropy rate hµ at finite L, and each difference bhµ(L) − hµc is the
difference between the entropy rate conditioned on L measurements and the en-
tropy rate conditioned on an infinite number of measurements – it estimates the
information-carrying capacity in the L-blocks that is not actually random, but is
due instead to correlations, and can be interpreted as the local (i.e. L-dependent)
predictability [30]. The total sum of these local over-estimates is the excess entropy
or intrinsic redundancy in the source. Thus, the excess entropy measures the amount
of apparent randomness at small L values that is “explained away” by considering
correlations over larger and larger blocks. Importantly, Crutchfield and Feldman
[24] demonstrated that the excess entropy E can also be seen as either:

(1) the mutual information between the source’s past and the future – exactly the
predictive information Ipred(T, T ′), if T and T ′ are semi-infinite, or
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(2) the subextensive part of entropy H(L) = E + hµL, as L →∞.

It was also shown that only the first interpretation holds in 2-dimensional systems
[35].

Revisiting representation (6), we may point out that the total uncertainty H(T ′)
can be thought of as structural diversity of the underlying process. Similarly the
conditional uncertainty H(T ′|T ) can be related to structural non-conformity or
equivocation within the process – a degree of non-assortativeness between the past
and the future, or between components of the process in general. This analogy
creates an alternative intuitive representation, which will be analysed in section 4:

predictive information = excess entropy = diversity − non-assortativeness (8)

3.3. Example – Thue-Morse process

Predictive information grows logarithmically for infinite-memory Thue-Morse se-
quences σk(s) which contain two units 0 and 1, and can be obtained by the sub-
stitution rules σk(0) = 01 and σk(1) = 10 (e.g. σ2(1) = 1001, etc.). Such a process
needs an infinite amount of memory to maintain its aperiodicity [24], and hence,
its past provides an ever-increasing predictive information about its future.

An even faster rate of growth is also possible – typically, this happens in problems
where predictability over long scales is “governed by a progressively more detailed
description” as more data are observed [8]. This essentially produces an increase in
the number of causal states, used by Crutchfield in defining statistical complexity.

3.4. Example – periodic vs random processes

The source entropy rate hµ captures the irreducible randomness produced by a
source after all correlations are taken into account [24]:

• hµ = 0 for periodic processes and even for deterministic processes with infinite-
memory (e.g. Thue-Morse process) which do not have an internal source of
randomness, and

• hµ > 0 for irreducibly unpredictable processes, e.g. independent identically
distributed (IID) processes which have no temporal memory and no complexity,
as well as Markov processes (both deterministic and nondeterministic), and
infinitary processes (e.g. positive-entropy-rate variations on the Thue-Morse
process).

The excess entropy, or predictive information, is a better measure of complexity as
it increases with the amount of structure or memory within a process:

• E is finite for both periodic processes and random (e.g. it is zero for an IID
process) – its value can be used as a relative measure: a larger period results
in higher E, as a longer past needs to be observed before we can estimate the
finite predictive information;
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• E diverges logarithmically for complex processes due to an infinite memory
(e.g. Thue-Morse process) – again, its value can be used as a relative measure
estimating a number of parameters or rules in the underlying model;

• E exhibits a sublinear power law divergence for complex processes due to a
nonparametric model of the underlying process (e.g. a continuous function with
smoothness constraints) – here, the relative measure is the number of different
parameter-estimation scales growing in proportion to the number of taken sam-
ples (e.g. the number of bins used in a histogram approximating the distribution
of a random variable), i.e. a progressively more detailed description is required.

3.5. Summary

While entropy rate is a good identifier of intrinsic randomness, it suffers from the
same drawbacks as the Kolmogorov-Chaitin (KC) complexity, to which it is strongly
related. To reiterate, the KC complexity of an object is the length of the minimal
Universal Turing Machine (UTM) program needed to reproduce it. The entropy
rate hµ is equal to the average length (per variable) of the minimal program that,
when run, will cause an UTM to produce a typical configuration and then halt
[34, 21, 49].

The relationships Ipred(T, T ′) = E and E ≤ Cµ, suggest a very intuitive inter-
pretation:

predictive information = richness of structure ≤
statistical complexity = memory for optimal predictions (9)

where the latter is defined as the entropy of causal states – all histories that have
the same conditional distribution of futures [26, 61]. The causal states provide an
optimal description of a system’s dynamics in the sense that these states make as
good a prediction as the histories themselves. The inequality in (9) means that the
memory needed to perform an optimal prediction of the future configurations cannot
be lower than the mutual information between the past and future themselves [34]:
this relationship reflects the fact that the causal states are a reconstruction of the
hidden, effective states of the process.

Specifying how the memory within a process is organized cannot be done within
the framework of Information Theory [24], and a more structural approach based
on the Theory of Computation must be used – this leads (via causal states) to
ε-machines and statistical complexity Cµ.

4. Edge-of-chaos

According to the analysis presented in the preceding section, statistical complexity is
small at both extremes (complete order and complete randomness), and is maximal
in the region somewhere between the extremes. Moreover, in some “intermediate”
cases, the complexity is infinite, and may be divergent at different rates. A few
natural questions then arise:
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• when does the complexity attains the maximum;
• how can we precisely identify this region;
• what happens to information dynamics within or near this region; and
• how such dynamics are related to self-organisation, adaptation, evolution, and

emergence in general.

4.1. Concept

Cellular automata (CA) are discrete spatially-extended dynamical systems that
have been used as models of many computational, physical and biological processes
[52], and we shall use this abstraction in illustrating the edge-of-chaos phenomenond.
Langton [48] examined behaviour of CA in terms of the parameter λ – the fraction of
rules with a given property in the rule table (e.g. the fraction of nonzero transitions).
Varying the parameter within its range between ordered and chaotic extremes,
he identified, for intermediate values of λ, an increase in the mutual information
I(A; B) between a cell and itself at the next time-step. An intriguing feature is
that the average mutual information has a distinct peak at the transition point
– an indication of a phase transition from “order” to “chaos” in CA. This study
introduced the edge-of-chaos – the region where the CA behaviour shifts from the
ordered regimes towards chaotic regimes, effectively approaching random dynamics.

4.2. Information-theoretic interpretation

A rule-space of 1-dimensional CA was characterised with the Shannon entropy of
rules’ frequency distribution [73]. More precisely, given a rule-table (the rules that
define a CA), the input-entropy at time step t is defined as

St = −
m∑

i=1

Qt
i

n
log

Qt
i

n
(10)

where m is the number of rules, n is the number of cells (system size), and Qt
i is

the number of times the rule i was used at time t across the CA. The input-entropy
settles to fairly low values for ordered dynamics, but fluctuates irregularly within
a narrow high band for chaotic dynamics. For the complex CA, order and chaos
may predominate at different times causing the entropy to vary. A measure of the
variability of the input-entropy curve is its variance or standard deviation, calcu-
lated over time. Wuensche [73] has convincingly demonstrated that only complex
dynamics exhibits high variance of input-entropy, leading to automatic classifica-
tion of the rule-space. Importantly, the peak of input-entropy variance points to a
phase transition as well, indicating the edge-of-chaos.

dWe would like to point out that the edge-of-chaos hypothesis is far from being accepted unani-
mously. The edge of chaos concept is also distinct from low dimensional chaos in dynamical systems,
characterised by non-periodicity with few degrees of freedom. Nevertheless some connections have
been made – see subsection 4.3 for a brief description.
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Similarly, Wolfram [72] classified cellular automata rules qualitatively – accord-
ing to their asymptotic behavior: class I (homogeneity); class II (periodicity); class
III (chaos); class IV (complexity). The first class consists of CA that, after a finite
number of time steps, produce a unique, homogeneous state (analogous to “fixed
points” in phase space). From almost all initial states – such behaviour completely
destroys any information on the initial state, i.e. complete prediction is trivial and
complexity is low. The second class contains automata which generate a set of either
stable or periodic structures (typically having small periods – analogous to “limit
cycles” in phase space) – each region of the final state depends only on a finite
region of the initial state, i.e. information contained within a small region in the
initial state thus suffices to predict the form of a region in the final state. The third
class includes infinite CA producing aperiodic (“chaotic”) spatiotemporal patterns
from almost all possible initial states – the effects of changes in the initial state
almost always propagate forever at a finite speed, and a particular region depends
on a region of the initial state of an ever-increasing size (analogous to “strange
attractors” in phase space). While any prediction of the “final” state requires com-
plete knowledge of the initial state, the regions are indistinguishable statistically
as they possess no structure, and therefore the statistical complexity is low. The
fourth class deals with automata that generate patterns continuously changing over
an unbounded transient.

4.3. Example – universal computation

The fourth class CA existing at the edge-of-chaos were also shown to be capable of
universal computation [72]. They support three basic operations (information stor-
age, transmission, and modification) through static, propagating and interacting
structures (blinkers, gliders, collisions). Importantly, the patterns produced along
the transient are different in terms of generated structure, and in fact, their struc-
tural variability is highest among all four classes – i.e. the predictive information
and the complexity of the class IV automata are highest. Casti [13] made an analogy
between the complex (class IV) automata and quasi-periodic orbits in phase space,
while pursuing deeper interconnections between CA, dynamical systems, Turing
Machines, and formal logic systems – in particular, the complex automata pro-
ducing edge-of-chaos dynamics were related to formal systems with undecidable
statements (Gödel’s Theorem).

4.4. Example – graph connectivity

Graph connectivity can be analysed in terms of the size of the largest connected
subgraph (LCS) and its standard deviation obtained across an ensemble of graphs,
as suggested by Random Graph Theory [32]. In particular, critical changes occur
in connectivity of a directed graph as the number of edges increases: the size of
the LCS rapidly increases as well and fills most of the graph, while the variance in
the size of the LCS reaches a maximum at some critical point before decreasing. In
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other words, variability within the ensemble of graphs grows as graphs become more
and more are different in terms of their structure – this is analogous to different
patterns in complex CA.

An information-theoretic representation can subsume this graph-theoretic
model. For example, a feasible average measure of a complex network’s hetero-
geneity is given by the entropy of a network defined through the link distribution.
The latter can be defined via the simple degree distribution, the probability Pk

of having a node with k links, or via the remaining degree distribution qk: “the
number of edges leaving the vertex other than the one we arrived along” [68]. The
remaining degree distribution is useful in analysing how assortative, disassortative
or non-assortative is the network. Assortative mixing (AM) in Graph Theory is the
extent to which high-degree nodes connect to other high degree nodes [53]. In disas-
sortative mixing (DM), high-degree nodes are connected to low-degree ones. Both
AM and DM networks are contrasted with non-assortative mixing (NM), where one
cannot establish any preferential connection between nodes.

Importantly, the conditional entropy H(q|q′) may estimate spurious correlations
in the network created by connecting the vertices with dissimilar degrees – this noise
affects the overall diversity or the average uncertainty of the network, but does not
contribute to the amount of information (correlation) within it. Using the joint
probability of connected pairs qk,k′ , one may calculate the amount of correlation
between vertices in the graph via the mutual information measure, the information
transfer, as

I(q) = H(q)−H(q|q′) =
m∑

k=1

m∑

k′=1

qk,k′ log
qk,k′

qkqk′
. (11)

Informally,

transfer within the network =

diversity in the network − assortative noise in the network structure (12)

This interpretation is analogous to the one suggested by the Equations (4) and (8),
assuming that assortative noise is the non-assortative extent to which the preferen-
tial (either AM or DM) connections are obscured. In general, the mutual information
I(q) is a better, more generic measure of dependence: correlation functions, like the
variance in the size of the LCS, “measure linear relations whereas mutual informa-
tion measures the general dependence and is thus a less biased statistic” [68]. At
the edge of chaos, the information transfer within the network attains its maximum.
This case, however, is not easily achievable as observed by Sole and Valverde. In
fact, the cases where entropy H(q) and noise H(q|q′) are approximately equal, are
most typical, suggesting that some intrinsic constraints dominate the search-space
of possible network configurations.
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4.5. Summary

The main Edge-of-Chaos hypothesis asserts that when biological systems must per-
form complex computation for survival, the process of evolution under natural se-
lection tends to select systems near a phase transition between ordered and chaotic
behavior [52] – i.e. the complex dynamic regime acts as an evolutionary attractor
in the state space. The analysis summarised in this section emphasizes the role of
structural variability (equivalent to predictive information) in complex systems –
at the edge of chaos the behaviour is potentially structurally richer and therefore,
has a higher predictive capacity.

5. Self-Organisation

Three ideas are implicit in the word self-organisation: a) the organisation in terms of
global implicit coordination; b) the dynamics implicit in progressing in time from a
not (or less) organised to an organised state; and c) the spontaneous arising of such
dynamics. To avoid semantic traps, it is important to notice that the word ‘sponta-
neous’ should not be taken literally; we deal with open systems, exchanging energy,
matter and/or information with the environment and made up of components whose
properties and behaviours are defined prior to the organisation itself. The ‘self’ pre-
fix merely states that no centralised ordering or external agent/template explicitly
guides the dynamics. It is thus necessary to define what is meant by ‘organisation’
and how its arising or increase can be detected.

5.1. Concept

A commonly held view is that organisation entails an increase in complexity. Unfor-
tunately the lack of agreement of what we mean by complexity leaves such definition
somehow vague. For example, De Wolf and Holvoet [28] refer to complexity as a
measure of redundancy or structure in the system. The concept can be made more
formal by adopting the statistical complexity described above as a measure of com-
plexity, as demonstrated in Shalizi [60] and Shalizi et al. [64]. This definition offers
several of the advantages of the Computational Mechanics approach; it is com-
putable and observer independent. Also, it captures the intuitive notion that the
more a system self-organises, the more behaviours it can display, the more effort is
needed to describe its dynamics. Importantly, this needs to be seen in a statistical
perspective; while a disorganised system may potentially display a larger number
of actual configurations, the distinction among several of them may not be sta-
tistically significant. Adopting the statistical complexity allows us to focus on the
system configurations which are statistically different (causal states) for the pur-
pose at hand. We thus have a measure which is based only on the internal dynamics
of the system (and consequently is observer-independent) but which can be tuned
according to the purpose of the analysis.

For an alternative definition of self-organisation based on thermodynamics and
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the distinction between self-organisation and the related concept of self-assembly
we refer the reader to Halley and Winkler [39].

5.2. Information-theoretic interpretation

In the scientific literature the concept of self-organisation referrs to both living
and non living systems, ranging from physics and chemistry to biology and sociol-
ogy. Kauffman [43] suggests that the underlying principle of self-organisation is the
generation of constraints in the release of energy. According to this view, the con-
strained release allows for such energy to be controlled and channelled to perform
some useful work. This work in turn can be used to build better and more efficient
constraints for the release of further energy and so on; this principle is closely re-
lated to Kauffman’s own definition of life [43]. It helps us to understand why an
organised system with effectively less available configurations may behave and look
more complex than a disorganised one to which, in principle, more configurations
are available. The ability to constrain and control the release of energy may al-
low a system to display behaviours (reach configurations) which, although possible,
would be extremely unlikely in its non-organised state. It is surely possible that
100 parrots move independently to the same location at the same time, but this is
far more likely if they fly in a flock. A limited number of coordinated behaviours
become implementable because of self-organisation, which would extremely unlikely
to arise in the midst of a nearly infinite number of disorganised configurations. The
ability to constrain the release of energy thus provides the self-organised system
with behaviours that can be selectively chosen for successful adaptation.

However, Halley and Winkler [39] correctly point out that attention should
paid to how self-organisation is treated if we want the concept to apply equally to
both living and non-living systems. For example, while it is temping to consider
adaptation as a guiding process for self-organisation, it then makes it hard to use
the same definition of self-organisation for non-living systems.

Recently, Correia [19] analysed self-organisation motivated by embodied sys-
tems, i.e. physical systems situated in the real world, and established four funda-
mental properties of self-organisation: no external control, an increase in order, ro-
bustnesse, and interaction. All of these properties are easily interpretable in terms
of information transfer. Firstly, the absence of external control may correspond
to ‘spontaneous’ arising of information dynamics without any flow of information
into the self-organising system. Secondly, an increase in order or complexity re-
flects simply that the predictive information is increased within the system or
its specific part: Ipred([t1 − T, t1], [t1, t1 + T ′]) < Ipred([t2 − T, t2], [t2, t2 + T ′]),
and CSystem

µ (t2) > CSystem
µ (t1), for t2 > t1 and positive T and T ′, where

eAlthough Correia refers to this as adaptability, according to the concepts in this paper he in fact
defines robustness. This is an example of exactly the kind of issue we hope to avoid by developing
this dictionary.
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CSystem
µ (t) is the statistical complexity at time t. In general, however, we be-

lieve that one may relax the distinction between these two requirements and de-
mand only that in a self-organising system, the amount of information flowing from
the outside IOutside is strictly less than the change in the predictive information’s
gain: IOutside < Ipred([t2 − T, t2], [t2, t2 + T ′]) − Ipred([t1 − T, t1], [t1, t1 + T ′]), or
COutside

µ < CSystem
µ (t2) − CSystem

µ (t1), where COutside
µ is the complexity of the

contribution from the outside.
In general, a system is robust if it continues to function in the face of per-

turbations [71]. Information-theoretically, robustness of a self-organising system to
perturbations means that it may interleave stages of an increased information trans-
fer within some channels (dominant patterns are being exploited) with periods of
decreased information transfer (alternative patterns are being explored).

The interaction property is described by Correia [19] as follows: “minimisation
of local conflicts produces global optimal self-organisation, which is evolutionarily
stable.” Minimisation of local conflicts, however, is only one aspect, captured in
Equations (4), (8), and (12) as equivocation or non-assortativeness, and should be
generally complemented by maximising diversity within the system.

5.3. Example – self-organising traffic

In the context of pedestrian traffic, Correia [19] argues that it can be shown that
the “global efficiency of opposite pedestrian traffic is maximised when interaction
rate is locally minimised for each component. When this happens two separate
lanes form, one in each direction. The minimisation of interactions follows directly
from maximising the average velocity in the desired direction.” In other words, the
division into lanes results from maximizing velocity (an overall objective or fitness),
which in turn supports minimization of conflicts.

Another example is provided by ants: “Food transport is done via a trail, which is
an organised behaviour with a certain complexity. Nevertheless, a small percentage
of ants keeps exploring the surroundings and if a new food source is discovered a new
trail is established, thereby dividing the workers by the trails [42] and increasing
complexity” [19]. Here, the division into trails is again related to an increase in
fitness and complexity.

These two examples demonstrate that when local conflicts are minimised, the
degree of coupling among the components (i.e. interaction) increases and the in-
formation flows easier, thus increasing the predictive information. This means that
not only the overall diversity of a system is important (more lanes or trails), but
the interplay among different channels (the assortative noise within the system, the
conflicts) is crucial as well.

5.4. Example – self-regulating morphogenetic processes

Modeling information processing in bio-systems is concerned with the nature of
biological information and the ways in which it is processed in biological and ar-
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tificial cells and tissues. There are a number of models involving self-organising or
self-regulating processes within complex biological systems. For example, some mor-
phogenetic models explore the requirements for spontaneous formation of regular
and stable structures out of more or less homogeneous cell aggregations or cell sheets
– i.e. the creation of a new form apparently without a detailed external blueprint.
In particular, the biomechanical model of Beloussov and Grabovsky [7] reproduces
two main categories of patterns, stationary cell domains and running waves. It in-
terplays short- and long-range factors in a “causal chain” moving from the state
of an initial homogeneous cell layer towards the complicated shapes of embryonic
rudiments: “the local perturbations act in ensemble, rather than in a mosaic, one-
to-one manner”f . The model involves a measure of the cells’ mechanosensitivity (i.e.
their ability to transform external mechanical stresses into active mechanochemical
reactions), and changes in the tangential pressure due to cell extensions and con-
tractions. An increase in mechanosensitivity is related to the formation of regular
stationary structures and propagating waves, travelling across embryonic tissues,
while an increase of the limits of tangential extension is essentially destructive,
deteriorating regular structures and generating irregular waves. This interplay be-
tween two forces may be interpreted in information-theoretic terms: the information
transfer is optimal when the diversity in mechanosensitivity is large, and the assor-
tative noise (conflicts) inducing tensions is minimal. Spontaneous formation occurs,
thus, within an optimal range of the information transfer and not at either of these
extremes.

5.5. Example – self-controlling neural automata

One possible pathway towards an optimal solution in the information-theoretic
search-space is explored in the context of neural networks with dynamic synapses.
Cortes et al. [20] studied neural automata (neurobiologically inspired cellular au-
tomata) which exhibit “chaotic itinerancy among the different stored patterns or
memories”. In other words, activity-dependent synaptic fluctuations (“noise”) ex-
plore the search-space by continuously destabilising a current attractor and in-
ducing random hopping to other possible attractors. The complexity and chaotic-
ity of the resulting dynamics (hopping) depends on the intensity of the synaptic
“noise” and on the number of the network nodes that are synchronously updated
(we note again the two forces involved in the information transfer – diversity and
non-assortativeness). Cortes et al. [20] utilised a quantitative measure – the entropy
of neural activity over time (computed in frequency-domain), and related varying
values of synaptic noise parameter F to different regimes of chaoticity. Decreasing
entropy for mid-range values of F indicates a tendency towards regularization or

fWe would like to point out that in this example, as well as in many others, there are external initial
conditions, and this requires a precise estimation of the external influence COutside

µ , contrasted

with the increase in complexity CSystem
µ (t2)− CSystem

µ (t1) during morphogenesis.
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smaller chaoticity. Importantly, hopping controlled by synaptic noise may occur
autonomously, without the need for external stimuli.

5.6. Example – self-organising locomotion

The internal channels through which information flows within the system are
observer-independent, but different observers may select different channels for a
specific analysis. For example, let us consider a modular robotic system modelling
a multi-segment snake-like (salamander) organism, with actuators (“muscles”) at-
tached to individual segments (“vertebrae”). A particular side-winding locomotion
emerges as a result of individual control actions when the actuators are coupled
within the system and follow specific evolved rules [56, 55]. There is no global co-
ordinator component in the evolved system, and it can be shown that the amount
of predictive information between groups of actuators grows as the modular robot
starts to move across the terrain – that is, the distributed actuators become more
coupled when a coordinated side-winding locomotion is dominant. Faced with ob-
stacles, the robot temporarily loses the side-winding pattern: the modules become
less organised, the strength of their coupling is decreased, and rather than exploit-
ing the dominant pattern, the robot explores various alternatives. Such exploration
temporarily decreases self-organisation, i.e. the predictive information within the
system. When the obstacles are avoided, the modules “rediscover” the dominant
side-winding pattern by themselves, recovering the previous level of predictive in-
formation and manifesting again the ability to self-organise without any global
controller. Of course, the “magic” of this self-organisation is explained by proper-
ties defined a priori : the rules employed by the biologically-inspired actuators have
been obtained by a genetic programming algorithm, while the biological counterpart
(the rattlesnake Crotalus cerastes) naturally evolved over long time. Our point is
simply that we can measure the dynamics of predictive information and statistical
complexity as it presents itself within the channels of interest.

In summary, the fundamental properties of self-organisation are immediately
related to information dynamics, and can be studied in precise information-theoretic
terms when the appropriate channels are identified.

6. Emergence

Nature can be observed at different levels of resolution, be these intended as spatial
or temporal scales or as measurement precision. For certain phenomena this affects
merely the level of details we can observe. As an example, depending on the scale
of observation, satellite images may highlight the shape of a continent or the make
of a car; similarly, the time resolution of a temperature time series can reflect local
stochastic (largely unpredictable) fluctuations or daily periodic (fairly predictable)
oscillations. There are classes of phenomena though, which when observed at differ-
ent levels, display behaviours which appear fundamentally different. The quantum
phenomena of the ‘very small’ and the relativistic effects of the ‘very large’ do not



September 1, 2006 10:29 WSPC/INSTRUCTION FILE ITprimer-ws-acs

An Information-theoretic Primer 19

seem to find obvious realisations in our everyday experience at the middle scale;
similarly the macroscopic behaviour of a complex organism appears to transcend
the biochemistry it derives from. The apparent discontinuity between these radically
different phenomena arising at different scales is usually, broadly and informally,
defined as emergence.

Attempts to formally address the study of emergence have sprung at regular
intervals in the last century or so (for a nice review see Corning [18]), under dif-
ferent names, approaches and motivations and is currently receiving a new burst
of interest. Here we borrow from Crutchfield [22], who, in a particularly insightful
work, proposes a distinction between two phenomena which are commonly viewed
as expression of emergence: pattern formation and ‘intrinsic’ emergence.

6.1. Concept

Pattern Formation. In pattern formation we imagine an observer trying to ‘un-
derstand’ a process. If the observer detects some patterns (structures) in the system,
they can then employ such patterns as tools to simplify their understanding of the
system. As an example, a gazelle which learns to correlate hearing a roaring to the
presence of a lion, will be able to use it as warning and flee danger. Not being able
to detect the pattern ‘roaring = lion close by’ would require the gazelle to detect
more subtle signs, possibly needing to employ more attention and thus more effort.
In this setting the observer (gazelle) is ‘external’ to the system (lion) it needs to
analyse.

Intrinsic emergence. In intrinsic emergence, the observer is ‘internal’ to the
system. Imagine a set of traders in an economy. The traders are locally connected
via their trades, but no global information exchange exists. Once the traders identify
an ‘emergent’ feature, like the stock market, they can employ it to understand and
affect the functioning of the system itself. The stock market becomes a mean for
global information processing, which is performed by the agents (that is, the system
itself) to affect their own functioning.

6.2. Information-theoretic interpretation

Given that a system can be viewed and studied at different levels, a natural question
is “what level should we choose for our analysis”? A reasonable answer could be
“the level at which it is easier or more efficient to construct a workable model”.
This idea has been captured formally by Shalizi [60] in the definition of Efficiency
of Prediction. Within a Computational Mechanics [61] framework, Shalizi suggests:

e =
E

Cµ
(13)

where e is the Efficiency of Prediction, E is the excess entropy and Cµ the statistical
complexity discussed above. The excess entropy can be seen as the mutual informa-
tion between the past and future of a process, that is, the amount of information
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observed in the past which can be used to predict the future (i.e. which can be
usefully coded in the agent instructions on how to behave in the future). Recalling
that the statistical complexity is defined as the amount of information needed to
reconstruct a process (that is equivalent to performing an optimal prediction), we
can write informally:

e =
how much can be predicted
how difficult it is to predict

(14)

Given two levels of description of the same process, the approach Shalizi suggests
is to choose for analysis the level which has larger efficiency of prediction e. At this
level, either:

• we can obtain better predictability (understanding) of the system (E is larger),
or

• it is much easier to predict because the system is simpler (Cµ is smaller), or
• we may lose a bit of predictability (E is smaller) but at the benefit of much

larger gain in simplicity (Cµ is much smaller).

We can notice that this definition applies equally to pattern formation as well as
to intrinsic emergence. In the case of pattern formation, we can envisage the scientist
trying to determine what level of enquiry will provide a better model. At the level of
intrinsic emergence, developing an efficient representation of the environment and
of its own functioning within the environment gives a selective advantage to the
agent, either because it provides for a better model, or because it provides for a
similar model at a lower cost, enabling the agent to direct resources towards other
activities.

6.3. Example – the emergence of thermodynamics

A canonical example of emergence without self-organisation is described by Shalizi
[60]: thermodynamics can emerge from statistical mechanics. The example consid-
ers a cubic centimeter of argon, which is conveniently spinless and monoatomic,
at standard temperature and pressure, and sample the gas every nanosecond. At
the micro-mechanical level, and at time intervals of 10−9 seconds, the dynamics of
the gas are first-order Markovian, so each microstate is a causal state. The ther-
modynamic entropy (calculated as 6.6 · 1020 bits) gives the statistical complexity
Cµ. The entropy rate hµ of one cubic centimeter of argon at standard temperature
and pressure is quoted to be around 3.3 · 1029 bits per second, or 3.3 · 1020 bits per
nanosecond. Given the range of interactions R = 1 for a first-order Markov process,
and the relationship E = Cµ −Rhµ [34], it follows that the efficiency of prediction
e = E/Cµ is about 0.5 at this level. Looking at the macroscopic variables uncov-
ers a dramatically different situation. The statistical complexity Cµ is given by the
entropy of the macro-variable energy which is approximately 33.28 bits, while the
entropy rate per millisecond is 4.4 bits (i.e. hµ = 4.4 · 103 bits/second). Again,
the assumption that the dynamics of the macro-variables are Markovian, and the
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relationship E = Cµ −Rhµ yield e = E/Cµ = 1−Rhµ/Cµ = 0.87. If the time-step
is a nanosecond, like at the micro–mechanical level, then e ≈ 1, i.e. the efficiency of
prediction approaches maximum. This allows Shalizi to conclude that “almost all of
the information needed at the statistical-mechanical level is simply irrelevant ther-
modynamically”, and given the apparent differences in the efficiencies of prediction
at two levels, “thermodynamic regularities are emergent phenomena, emerging out
of microscopic statistical mechanics” [60].

7. Adaptation and Evolution

Adaptation is a process where the behaviour of the system changes such that there
is an increase in the mutual information between the system and a potentially com-
plex and non-stationary environment. The environment is treated as a black box,
meaning an adaptive system does not need to understand the underlying system dy-
namics to adapt. Stimulus response interactions provide feedback that modifies an
internal model or representation of the environment, which affects the probability
of the system taking future actions.

7.1. Concept

The three essential functions for an adaptive mechanism are generating variety,
observing feedback from interactions with the environment, and selection to rein-
force some interactions and inhibit others. Without variation, the system cannot
change its behaviour, and therefore it cannot adapt. Without feedback, there is no
way for changes in the system to be coupled to the structure of the environment.
Without preferential selection for some interactions, changes in behaviour will not
be statistically different to a random walk. First order adaptation keeps sense and
response options constant and adapts by changing only the probability of future
actions. However, adaptation can also be applied to the adaptive mechanism itself
[38]. Second order adaptation introduces three new adaptive cycles: one to improve
the way variety is generated, another to adapt the way feedback is observed and
thirdly an adaptive cycle for the way selection is executed. If an adaptive system
contains multiple autonomous agents using second order adaptation, a third order
adaptive process can use variation, feedback and selection to change the structure
of interactions between agents.

From an information-theoretic perspective, variation decreases the amount of
information encoded in the system, while selection acts to increase information.
Since adaptation is defined to increase mutual information between a system and
its environment, the information loss from variation must be less than the increase
in mutual information from selection.

For the case that the system is a single agent with a fixed set of available actions,
the environmental feedback is a single real valued reward plus the observed change
in state at each time step, and the internal model is an estimate of the future value
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of each state, this model of first order adaptation reduces to reinforcement learning
(see for example [69]).

For the case that the system contains a population whose generations are coupled
by inheritance with variation under selective pressure, the adaptive process reduces
to evolution. Evolution is not limited to DNA/RNA based terrestrial biology, since
other entities, including prions and artificial life programs, also meet the criteria for
evolution. Provided a population of replicating entities can make imperfect copies
of themselves, and not all the entities have an equal capacity to survive, the system
is evolutionary. This broader conception of evolution has been coined universal
Darwinism by Dawkins [27].

7.2. Information-theoretic interpretation

Adami [1] advocated the view that “evolution increases the amount of information
a population harbors about its niche”. In particular, he proposed physical com-
plexity – a measure of the amount of information that an organism stores in its
genome about the environment in which it evolves. Importantly, physical complex-
ity for a population X (an ensemble of sequences) is defined in relation to a specific
environment Z, as mutual information:

I(X,Z) = Hmax −H(X|Z) (15)

where Hmax is the entropy in the absence of selection, i.e. the unconditional entropy
of a population of sequences, and H(X|Z) is the conditional entropy of X given Z,
i.e. the diversity tolerated by selection in the given environment. When selection
does not act, no sequence has an advantage over any other, and all sequences are
equally probable in ensemble X. Hence, Hmax is equal to the sequence length.
In the presence of selection, the probabilities of finding particular genotypes in the
population are highly non-uniform, because most sequences do not fit the particular
environment. The difference between the two terms in 15 reflects the observation
that “If you do not know which system your sequence refers to, then whatever is
on it cannot be considered information. Instead, it is potential information (a.k.a.
entropy)”. In other words, this measure captures the difference between potential
and selected (filtered) information:

physical complexity = how much data can be stored−
how much data irrelevant to environment is stored (16)

Comparing this with the information transfer through networks, Equation (12), as
well as analogous information dynamics Equations (4) and (8), we can observe a
strong similarity: “how much data can be stored” is related to diversity of the net-
work, while “how much data irrelevant to environment is stored” (or “how much
conflicting data”) corresponds to assortative noise in the network. In short, natural
selection increases physical complexity by the amount of information a popula-
tion contains about its environment. Adami argued that physical complexity must
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increase in molecular evolution of asexual organisms in a single niche if the envi-
ronment does not change, due to natural selection, and that “natural selection can
be viewed as a filter, a kind of semipermeable membrane that lets information flow
into the genome, but prevents it from flowing out”. In general, information may
flow out and it is precisely this dynamic that creates larger feedback loops in the
environment.

7.3. Example – perception-action loops

The information transfer can also be interpreted as the acquisition of information
from the environment by a single adapting individual: there is evidence that pushing
the information flow to the information-theoretic limit (i.e. maximization of infor-
mation transfer) can give rise to intricate behaviour, induce a necessary structure in
the system, and ultimately adaptively reshape the system [44, 45]. The central hy-
pothesis of Klyubin et al. is that there exists “a local and universal utility function
which may help individuals survive and hence speed up evolution by making the fit-
ness landscape smoother”, while adapting to morphology and ecological niche. The
proposed general utility function, empowerment, couples the agent’s sensors and
actuators via the environment. Empowerment is the perceived amount of influence
or control the agent has over the world, and can be seen as the agent’s potential
to change the world. It can be measured via the amount of Shannon information
that the agent can “inject into” its sensor through the environment, affecting future
actions and future perceptions. Such a perception-action loop defines the agent’s
actuation channel, and technically empowerment is defined as the capacity of this
actuation channel: the maximum mutual information for the channel over all pos-
sible distributions of the transmitted signal. “The more of the information can be
made to appear in the sensor, the more control or influence the agent has over
its sensor” – this is the main motivation for this local and universal utility func-
tion [45]. Other examples highlighting the role of information transfer in guiding
selection of spatiotemporally stable multi-cellular patterns, well-connected network
topologies, and coordinated actuators in a modular robotic system are discussed in
[59, 58, 55, 56].

8. Self-referentiality

Patterns of intrinsic emergence may form as a result of observer-independent pro-
cesses – nevertheless, these are patterns only with respect to a certain observation
structure, imposed on or selected in the environment a priori, and not necessar-
ily by the “observer”. An interesting aspect, however, is that the choice of such a
structure is not entirely decoupled from the environment. In fact, this choice often
depends on the emergent phenomena. So the process can be best characterised in
terms of tangled hierarchies exhibiting Strange Loops: “an interaction between lev-
els in which the top level reaches back down towards the bottom level and influences
it, while at the same time being itself determined by the bottom level” [41].
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8.1. Concept

This view involves the concept of downward causation [36, 10, 40]: a feature is emer-
gent if it has some sort of causal power on lower level entities. While common views
of emergence assume that lower level entities must have an “upward” causation on
the emergent features, this approach requires a 2-way causal relation. As an exam-
ple, we can imagine individuals organising into a community (e.g. the Bar problem
[3]). Their actions affect how the community develops (upward causality) and the
development of the community itself affects the behaviour and interaction of the in-
dividuals (downward causality). An important feature of such systems is that, in the
absence of explicit information sharing, each individual may need to “best-guess”
what the other individuals may do over time. Systems that fall into this category are
sometimes called self-referential problems – situations where the forecasts made by
the individuals serve to create the world they are trying to forecast [6, 5]. In these
systems, the “best” thing to do depends not on a rational decision model (which
does not exist), but on what everyone else is doing, creating a heterogeneous mix of
decision strategies that continually co-evolve over time [3, 14, 4]. Even if the indi-
viduals are allowed to communicate and share some information, the heterogeneity
prevails [31].

8.2. Information-theoretic interpretation

A closely related problem is the minority game [17]: a repeated game where N

(odd) agents have to choose one out of two alternatives at each time step, and
those who happen to be in the minority win. As noted by Batten [6], “seemingly
simple at first glance, the game is subtle in the sense that if all players analyze
the situation identically, all will choose the same alternative and therefore all will
lose”. The agents may share information on the outcomes of the game in past M

rounds (memory). In the minority game, there is a second order phase transition in
the space of the parameter α = 2M/N , between a symmetric phase (where no past
information is available to agents) and an asymmetric phase (where past information
is available). An important feature of minority games is the possibility for some
agents (risk-averters) to imitate others (risk-takers) in selecting their actions. As
observed by Slanina [67], there is an optimal level of imitation, beyond which the
whole collective starts to perform worse in terms of the average gain of the agents:
“moderate imitation can be beneficiary, while exaggerated one can be harmful”. In
addition, this optimal level increases with decreasing memory length M : the less
information is shared, the more imitation is allowed.

8.3. Example – shortest path formation by ants

Another well-known example of downward causation is shortest path formation with
ants: ants indirectly interact through changes in their environment by depositing
pheromones and forming a pheromone trail. This mechanism for increasing shared
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information is known as stigmergy. The probability that an ant chooses a trail
increases with the number of ants that chose the same path in the past – the process
is thus characterised by a positive feedback loop (a form of autocatalytic behaviour
called allelomimesis) [29]. Since the pheromone evaporates (loss of information),
the shortest path lasts longer than the alternatives, and the ants have a higher
probability of using and reinforcing it. Thus, not only the shortest path emerges as
a result of allelomimesis and stigmergy (upward causation), it also influences the
movement of the ants because they follow the pheromone trail (downward causation)
[28]. Importantly, we again observe diversity in ant behaviours (path explorers and
path exploiters).

8.4. Summary

The observed diversity in agent behaviours (risk-takers and risk-averters, or explor-
ers and exploiters) creates information dynamics: loss of information, or “forgetting”
effect [46], and gain of information, or “information selectivity” [47]. Our conjecture
is that self-referentiality eventually forces a split in information dynamics, breaking
the cycle between upward and downward causation. As a result of such a break,
some form of memory (implicit or explicit) emerges in the system in order to support
both diversity and imitation.

In summary, in self-referential systems there is also a relationship between het-
erogeneity, the level of non-assortative mixing, and the information shared within
the system – similar to the information transfer relationships (4), (8), (12), and
(16). A precise information-theoretic analysis of this relationship for self-referential
systems is a subject of future research (see Parunak et al. [54] and Prokopenko et
al. [57] for preliminary analysis).

9. Discussion and Conclusions

By studying the processes which result from the local interaction of relatively simple
components, Complex System Science has accepted the audacious aim of address-
ing problems which range from physics to biology, sociology and ecology. It is not
surprising that a common framework and language which enable practitioners of
different field to communicate effectively is still lacking. As a possible contribution
to this goal we have proposed a framework within which concepts like complexity,
emergence and self-organisation can be described, and most importantly, distin-
guished.

Figure 1 illustrates some relationships between the concepts introduced in this
paper. In particular, it shows two levels of an emergence hierarchy that are used
to describe a complex system. The figure depicts dynamics that tend to increase
complexity as arrows from left to right, and increases in the level of organisation
as arrows from bottom to top. The concepts can be related in numerical order as
follows. (1) demonstrates self-organisation, as components increase in organisation
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Fig. 1. A systems view of Complex Systems Science concepts.

over time. As the components become more organised, interdependencies arise con-
straining the autonomy of the components, and at some point it is more efficient
to describe tightly coupled components as an emergent whole (or system). (2) de-
picts a lower resolution description of the whole, which may be self-referential if
it causally affects the behaviour of its components. Note that Level 2 has a longer
time scale. The scope at this level is also increased, such that the emergent whole
is seen as one component in a wider population. As new generations descend with
modification through mutation and/or recombination, natural selection operates on
variants and the population evolves. (3) shows that interactions between members
of a population can lead to the emergence of higher levels of organisation: in this
case, a species is shown. (4) emphasises flows between the open system and the
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environment in the Level 1 description. Energy, matter and information enter the
system, and control, communication and waste can flow back out into the environ-
ment. When the control provides feedback between the outputs and the inputs of
the system in (5), its behaviour can be regulated. When the feedback contains vari-
ation in the interaction between the system and its environment, and is subject to
a selection pressure, the system adapts. Positive feedback that reinforces variations
at (6) results in symmetry breaking and/or phase transitions. (7) shows analogous
symmetry breaking in Level 2 in the form of speciation.

Below the complexity axis, a complementary view of system complexity in terms
of behaviour, rather than organisation, is provided. Fixed point behaviour at (8) has
low complexity, which increases for deterministic periodic and strange attractors.
The bifurcation process is a form of symmetry breaking. Random behaviour at
(9) also has low complexity, which increases as the system’s components become
more organised into processes with “infinitary sources” [24]: e.g. positive-entropy-
rate variations on the Thue-Morse process and other stochastic analogues of various
context-free languages. This class of behaviour (“infinitary sources”) is depicted in
(1). The asymptote between (8) and (9) is interpreted as the ‘edge of chaos’, where
the complexity can grow without bound. Beyond some threshold of complexity at
(10), the behaviour is incomputable: it cannot be simulated in finite time on a
Universal Turing Machine.

For our discussion we chose an information-theoretical framework. There are
four primary reasons for this choice:

(1) it enables clear and consistent definitions and relationships between complexity,
emergence and self-organisation in the physical world;

(2) the same concepts can equally be applied to biology;
(3) from a biological perspective, the basic ideas naturally extend to adaptation

and evolution, which begins to address the question of why complexity and
self-organisation are ubiquitous and apparently increasing in the biosphere; and

(4) it provides a unified setting, within which the description of relevant information
channels provides significant insights of practical utility.

As noted earlier, once the information channels are identified by designers of a
physical system (or naturally selected by interactions between a bio-system and its
environment), the rest is mostly a matter of computation. This computation can be
decomposed into “diversity” and “equivocation”, as demonstrated in the discussed
examples.

Information Theory is not a philosophical approach to the reading of natu-
ral processes, rather it comes with a set of tools to carry out experiments, make
predictions, and computationally solve real-world problems. Like all toolboxes, its
application requires a set of assumptions regarding the processes and conditions
regarding data collections to be satisfied. Also, it is by definition biased towards
a view of Nature as an immense information processing device. Whether this view
and these tools can be successfully applied to the large variety of problems Complex
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Systems Science aims to address is far from obvious. Our intent, at this stage, is
simply to propose it as a framework for a less ambiguous discussion among prac-
titioners from different disciplines. The suggested interpretations of the concepts
may be at best temporary place-holders in an evolving discipline – hopefully, the
improved communication which can arise from sharing a common language will lead
to deeper understanding, which in turn will enable our proposals to be sharpened,
rethought and even changed altogether.
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